Manicore
Library to implement schemes on n-dimensionnal manifolds.
Classes | Functions
ExteriorBundle

Objects and operator implementing the exterior algebra. More...

Classes

class  Manicore::ExteriorBasis< l, d >
 Class to handle the exterior algebra basis. More...
 
class  Manicore::ComplBasis< l, d >
 Return a mapping from the basis of l-forms in dimension d to the basis of (d-l)-forms. More...
 
struct  Manicore::Compute_pullback< l, d1, d2 >
 Generic pullback computation. More...
 
struct  Manicore::Compute_pullback< 0, d1, d2 >
 
struct  Manicore::Compute_pullback< 1, d1, d2 >
 
struct  Manicore::Compute_pullback< d, d, d >
 
struct  Manicore::Compute_pullback< 1, 1, 1 >
 
struct  Manicore::Compute_pullback< 2, 2, 3 >
 
struct  Manicore::Compute_pullback< 2, 3, 2 >
 
struct  Manicore::Compute_pullback< 2, 3, 3 >
 
struct  Manicore::Compute_ExtGram< l >
 Wrapper for the \(L^2\) product on the exterior algebra. More...
 
struct  Manicore::Monomial_powers< d >
 Generate a basis of monomial powers of degree r. More...
 
struct  Manicore::Koszul_full< l, d >
 Koszul operator from \(\mathcal{P}_r\Lambda^l(\mathbb{R}^d)\) to \(\mathcal{P}_{r+1}\Lambda^{l-1}(\mathbb{R}^d)\). More...
 
struct  Manicore::Diff_full< l, d >
 Differential operator from \(\mathcal{P}_r\Lambda^l(\mathbb{R}^d)\) to \(\mathcal{P}_{r-1}\Lambda^{l+1}(\mathbb{R}^d)\). More...
 
struct  Manicore::Initialize_exterior_module< d >
 Initialize every class related to the polynomial degree r. More...
 

Functions

template<typename V , typename Derived >
double Manicore::Compute_partial_det (const V &a1, const V &a2, const Eigen::MatrixBase< Derived > &A)
 Generic determinant computation. More...
 
constexpr size_t Manicore::Dimension::ExtDim (size_t l, size_t d)
 Dimension of the exterior algebra \(\Lambda^l(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::PolyDim (int r, size_t d)
 Dimension of \(\mathcal{P}_r(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::HDim (int r, size_t d)
 Dimension of homogeneous polynomials \( \mathcal{H}_r(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::PLDim (int r, size_t l, size_t d)
 Dimension of \(\mathcal{P}_r\Lambda^l(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::kHDim (int r, size_t l, size_t d)
 Dimension of the image of Koszul on homogeneous polynomials \( \kappa\mathcal{H}_r\Lambda^l(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::dHDim (int r, size_t l, size_t d)
 Dimension of the image of d on homogeneous polynomials \( d\mathcal{H}_r\Lambda^l(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::kPLDim (int r, size_t l, size_t d)
 Dimension of the image of Koszul on polynomials \( \kappa \mathcal{P}_r\Lambda^l(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::dPLDim (int r, size_t l, size_t d)
 Dimension of the image of d on polynomials \( d \mathcal{P}_r\Lambda^l(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::PLtrimmedDim (int r, size_t l, size_t d)
 Dimension of trimmed polynomial spaces \( \mathcal{P}_r^{-}\Lambda^l(\mathbb{R}^d)\). More...
 

Detailed Description

Objects and operator implementing the exterior algebra.



Function Documentation

◆ Compute_partial_det()

template<typename V , typename Derived >
double Manicore::Compute_partial_det ( const V &  a1,
const V &  a2,
const Eigen::MatrixBase< Derived > &  A 
)

Generic determinant computation.



The first two arguments should be the list of indexes to use, and the last the matrix This function returns the determinant of the partial matrix

◆ dHDim()

constexpr size_t Manicore::Dimension::dHDim ( int  r,
size_t  l,
size_t  d 
)
constexpr

Dimension of the image of d on homogeneous polynomials \( d\mathcal{H}_r\Lambda^l(\mathbb{R}^d)\).

◆ dPLDim()

constexpr size_t Manicore::Dimension::dPLDim ( int  r,
size_t  l,
size_t  d 
)
constexpr

Dimension of the image of d on polynomials \( d \mathcal{P}_r\Lambda^l(\mathbb{R}^d)\).

◆ ExtDim()

constexpr size_t Manicore::Dimension::ExtDim ( size_t  l,
size_t  d 
)
constexpr

Dimension of the exterior algebra \(\Lambda^l(\mathbb{R}^d)\).

◆ HDim()

constexpr size_t Manicore::Dimension::HDim ( int  r,
size_t  d 
)
constexpr

Dimension of homogeneous polynomials \( \mathcal{H}_r(\mathbb{R}^d)\).

◆ kHDim()

constexpr size_t Manicore::Dimension::kHDim ( int  r,
size_t  l,
size_t  d 
)
constexpr

Dimension of the image of Koszul on homogeneous polynomials \( \kappa\mathcal{H}_r\Lambda^l(\mathbb{R}^d)\).

◆ kPLDim()

constexpr size_t Manicore::Dimension::kPLDim ( int  r,
size_t  l,
size_t  d 
)
constexpr

Dimension of the image of Koszul on polynomials \( \kappa \mathcal{P}_r\Lambda^l(\mathbb{R}^d)\).

◆ PLDim()

constexpr size_t Manicore::Dimension::PLDim ( int  r,
size_t  l,
size_t  d 
)
constexpr

Dimension of \(\mathcal{P}_r\Lambda^l(\mathbb{R}^d)\).

◆ PLtrimmedDim()

constexpr size_t Manicore::Dimension::PLtrimmedDim ( int  r,
size_t  l,
size_t  d 
)
constexpr

Dimension of trimmed polynomial spaces \( \mathcal{P}_r^{-}\Lambda^l(\mathbb{R}^d)\).

◆ PolyDim()

constexpr size_t Manicore::Dimension::PolyDim ( int  r,
size_t  d 
)
constexpr

Dimension of \(\mathcal{P}_r(\mathbb{R}^d)\).