Manicore
Library to implement schemes on n-dimensionnal manifolds.
|
The methods in this file are meant to compute the action of everything that is independent of the atlas. More...
#include "exterior_dimension.hpp"
#include <vector>
#include <array>
#include <unordered_map>
#include <algorithm>
#include <cstdlib>
#include <cassert>
#include <Eigen/Dense>
#include <unsupported/Eigen/KroneckerProduct>
Go to the source code of this file.
Classes | |
class | Manicore::ExteriorBasis< l, d > |
Class to handle the exterior algebra basis. More... | |
class | Manicore::ComplBasis< l, d > |
Return a mapping from the basis of l-forms in dimension d to the basis of (d-l)-forms. More... | |
struct | Manicore::Compute_pullback< l, d1, d2 > |
Generic pullback computation. More... | |
struct | Manicore::Compute_pullback< 0, d1, d2 > |
struct | Manicore::Compute_pullback< 1, d1, d2 > |
struct | Manicore::Compute_pullback< d, d, d > |
struct | Manicore::Compute_pullback< 1, 1, 1 > |
struct | Manicore::Compute_pullback< 2, 2, 3 > |
struct | Manicore::Compute_pullback< 2, 3, 2 > |
struct | Manicore::Compute_pullback< 2, 3, 3 > |
struct | Manicore::Compute_ExtGram< l > |
Wrapper for the \(L^2\) product on the exterior algebra. More... | |
struct | Manicore::Monomial_powers< d > |
Generate a basis of monomial powers of degree r. More... | |
Namespaces | |
Manicore | |
Functions | |
template<typename V , typename Derived > | |
double | Manicore::Compute_partial_det (const V &a1, const V &a2, const Eigen::MatrixBase< Derived > &A) |
Generic determinant computation. More... | |
The methods in this file are meant to compute the action of everything that is independent of the atlas.
The most useful are: Compute_pullback : computes the action of a pullback to the exterior algebra Monomial_full : gives a mapping between index and monomial powers
The polynomial basis must be initialized before use.
The explicit ordering for low dimensions is available here.