Manicore
Library to implement schemes on n-dimensionnal manifolds.
|
constexpr functions to compute the dimension of various polynomial spaces More...
#include <cstddef>
Go to the source code of this file.
Namespaces | |
Manicore | |
Manicore::Dimension | |
Functions | |
constexpr size_t | Manicore::Dimension::factorial (size_t n) |
\( n! \) More... | |
constexpr size_t | Manicore::Dimension::binom (size_t n, size_t k) |
\( \begin{pmatrix} n \\ k \end{pmatrix} \) More... | |
constexpr size_t | Manicore::Dimension::ExtDim (size_t l, size_t d) |
Dimension of the exterior algebra \(\Lambda^l(\mathbb{R}^d)\). More... | |
constexpr size_t | Manicore::Dimension::PolyDim (int r, size_t d) |
Dimension of \(\mathcal{P}_r(\mathbb{R}^d)\). More... | |
constexpr size_t | Manicore::Dimension::HDim (int r, size_t d) |
Dimension of homogeneous polynomials \( \mathcal{H}_r(\mathbb{R}^d)\). More... | |
constexpr size_t | Manicore::Dimension::PLDim (int r, size_t l, size_t d) |
Dimension of \(\mathcal{P}_r\Lambda^l(\mathbb{R}^d)\). More... | |
constexpr size_t | Manicore::Dimension::kHDim (int r, size_t l, size_t d) |
Dimension of the image of Koszul on homogeneous polynomials \( \kappa\mathcal{H}_r\Lambda^l(\mathbb{R}^d)\). More... | |
constexpr size_t | Manicore::Dimension::dHDim (int r, size_t l, size_t d) |
Dimension of the image of d on homogeneous polynomials \( d\mathcal{H}_r\Lambda^l(\mathbb{R}^d)\). More... | |
constexpr size_t | Manicore::Dimension::kPLDim (int r, size_t l, size_t d) |
Dimension of the image of Koszul on polynomials \( \kappa \mathcal{P}_r\Lambda^l(\mathbb{R}^d)\). More... | |
constexpr size_t | Manicore::Dimension::dPLDim (int r, size_t l, size_t d) |
Dimension of the image of d on polynomials \( d \mathcal{P}_r\Lambda^l(\mathbb{R}^d)\). More... | |
constexpr size_t | Manicore::Dimension::PLtrimmedDim (int r, size_t l, size_t d) |
Dimension of trimmed polynomial spaces \( \mathcal{P}_r^{-}\Lambda^l(\mathbb{R}^d)\). More... | |
constexpr functions to compute the dimension of various polynomial spaces