Manicore
Library to implement schemes on n-dimensionnal manifolds.
Namespaces | Functions
exterior_dimension.hpp File Reference

constexpr functions to compute the dimension of various polynomial spaces More...

#include <cstddef>
Include dependency graph for exterior_dimension.hpp:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Namespaces

 Manicore
 
 Manicore::Dimension
 

Functions

constexpr size_t Manicore::Dimension::factorial (size_t n)
 \( n! \) More...
 
constexpr size_t Manicore::Dimension::binom (size_t n, size_t k)
 \( \begin{pmatrix} n \\ k \end{pmatrix} \) More...
 
constexpr size_t Manicore::Dimension::ExtDim (size_t l, size_t d)
 Dimension of the exterior algebra \(\Lambda^l(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::PolyDim (int r, size_t d)
 Dimension of \(\mathcal{P}_r(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::HDim (int r, size_t d)
 Dimension of homogeneous polynomials \( \mathcal{H}_r(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::PLDim (int r, size_t l, size_t d)
 Dimension of \(\mathcal{P}_r\Lambda^l(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::kHDim (int r, size_t l, size_t d)
 Dimension of the image of Koszul on homogeneous polynomials \( \kappa\mathcal{H}_r\Lambda^l(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::dHDim (int r, size_t l, size_t d)
 Dimension of the image of d on homogeneous polynomials \( d\mathcal{H}_r\Lambda^l(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::kPLDim (int r, size_t l, size_t d)
 Dimension of the image of Koszul on polynomials \( \kappa \mathcal{P}_r\Lambda^l(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::dPLDim (int r, size_t l, size_t d)
 Dimension of the image of d on polynomials \( d \mathcal{P}_r\Lambda^l(\mathbb{R}^d)\). More...
 
constexpr size_t Manicore::Dimension::PLtrimmedDim (int r, size_t l, size_t d)
 Dimension of trimmed polynomial spaces \( \mathcal{P}_r^{-}\Lambda^l(\mathbb{R}^d)\). More...
 

Detailed Description

constexpr functions to compute the dimension of various polynomial spaces